Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Candidate Dark Galaxy-2 (CDG-2) is a potential dark galaxy consisting of four globular clusters (GCs) in the Perseus cluster, first identified in D. Li et al. through a sophisticated statistical method. The method searched for overdensities of GCs from a Hubble Space Telescope (HST) survey targeting Perseus. Using the same HST images and new imaging data from the Euclid survey, we report the detection of extremely faint but significant diffuse emission around the four GCs of CDG-2. We thus have exceptionally strong evidence that CDG-2 is a galaxy. This is the first galaxy detected purely through its GC population. Under the conservative assumption that the four GCs make up the entire GC population, preliminary analysis shows that CDG-2 has a total luminosity of L_V,gal = 6.2 ± 3.0 × 10^6 L_⊙ and a minimum GC luminosity of L_V,GC = 1.03 ± 0.2 × 10^6 L_⊙. Our results indicate that CDG-2 is one of the faintest galaxies having associated GCs, while at least ∼16.6% of its light is contained in its GC population. This ratio is likely to be much higher (∼33%) if CDG-2 has a canonical GC luminosity function (GCLF). In addition, if the previously observed GC-to-halo mass relations apply to CDG-2, it would have a minimum dark matter halo mass fraction of 99.94% to 99.98%. If it has a canonical GCLF, then the dark matter halo mass fraction is ≳99.99%. Therefore, CDG-2 may be the most GC dominated galaxy and potentially one of the most dark matter dominated galaxies ever discovered.more » « lessFree, publicly-accessible full text available June 16, 2026
-
We present MArk-dependently THinned POint Process (Mathpop), a novel method to infer the globular cluster (GC) counts in ultra-diffuse galaxies (UDGs) and low-surface brightness galaxies (LSBGs). Many known UDGs have a surprisingly high ratio of GC number to surface brightness. However, standard methods to infer GC counts in UDGs face various challenges, such as photometric measurement uncertainties, GC membership uncertainties, and assumptions about the GC luminosity functions (GCLFs). Mathpop tackles these challenges using the mark-dependent thinned point process, enabling joint inference of the spatial and magnitude distributions of GCs. In doing so, Mathpop allows us to infer and quantify the uncertainties in both GC counts and GCLFs with minimal assumptions. As a precursor to Mathpop, we also address the data uncertainties coming from the selection process of GC candidates: we obtain probabilistic GC candidates instead of the traditional binary classification based on the color–magnitude diagram. We apply Mathpop to 40 LSBGs in the Perseus cluster using GC catalogs from a Hubble Space Telescope imaging program. We then compare our results to those from an independent study using the standard method. We further calibrate and validate our approach through extensive simulations. Our approach reveals two LSBGs having GCLF turnover points much brighter than the canonical value with Bayes’ factor being ∼4.5 and ∼2.5, respectively. An additional crude maximum-likelihood estimation and simulation study show that their GCLF TO points are approximately 0.9 mag and 1.1 mag brighter than the canonical value, with p-values of ∼10^−8 and ∼10^−5, respectively.more » « lessFree, publicly-accessible full text available May 7, 2026
-
We study the quiescent ultradiffuse galaxy FCC 224 in the Fornax cluster using Hubble Space Telescope (HST) imaging, motivated by peculiar properties of its globular cluster (GC) system revealed in shallower imaging. The surface brightness fluctuation distance of FCC 224 measured from HST is 18.6 ± 2.7 Mpc, consistent with the Fornax cluster distance. We use Prospector to infer the stellar population from a combination of multiwavelength photometry (HST, ground-based, Wide-field Infrared Survey Explorer) and Keck Cosmic Web Imager spectroscopy. The galaxy has a mass-weighted age of ∼10 Gyr, metallicity [M/H] of ∼ −1.25 dex, and a very short formation e-folding time of τ ∼ 0.3 Gyr. Its 12 candidate GCs exhibit highly homogeneous g_475−I_814 colors, merely 0.04 mag bluer than the diffuse starlight, which supports a single-burst formation scenario for this galaxy. We confirm a top-heavy GC luminosity function, similar to the two dark matter deficient galaxies NGC 1052-DF2 and DF4. However, FCC 224 differs from those galaxies with relatively small GC sizes of ∼3 pc (∼35% smaller than typical for other dwarfs), and with radial mass segregation in its GC system. We are not yet able to identify a formation scenario to explain all of the GC properties in FCC 224. Follow-up measurements of the dark matter content in FCC 224 will be crucial because of the mix of similarities and differences among FCC 224, DF2, and DF4.more » « lessFree, publicly-accessible full text available March 11, 2026
-
CDG-1 is a tight grouping of four likely globular clusters in the Perseus cluster, and a candidate dark galaxy with little or no diffuse light. Here we provide new constraints on the luminosity of any underlying stellar emission, using Hubble Space Telescope/UVIS F200LP imaging. No diffuse emission is detected, with a 2 σ upper limit of F200LP > 28.1 mag arcsec^−2 on the 5″ scale of CDG-1. This surface brightness limit corresponds to a 2 σ lower limit of >0.5 for the fraction of the total luminosity that is in the form of globular clusters. The most likely alternative, although improbable, is that CDG-1 is a chance grouping of four globular clusters in the halo of the Perseus galaxy IC 312.more » « less
-
Abstract The James Webb Space Telescope is revealing a new population of dust-reddened broad-line active galactic nuclei (AGN) at redshiftsz≳ 5. Here we present deep NIRSpec/Prism spectroscopy from the Cycle 1 Treasury program Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization (UNCOVER) of 15 AGN candidates selected to be compact, with red continua in the rest-frame optical but with blue slopes in the UV. From NIRCam photometry alone, they could have been dominated by dusty star formation or an AGN. Here we show that the majority of the compact red sources in UNCOVER are dust-reddened AGN: 60% show definitive evidence for broad-line Hαwith a FWHM > 2000 km s−1, 20% of the current data are inconclusive, and 20% are brown dwarf stars. We propose an updated photometric criterion to select redz> 5 AGN that excludes brown dwarfs and is expected to yield >80% AGN. Remarkably, among allzphot> 5 galaxies with F277W – F444W > 1 in UNCOVER at least 33% are AGN regardless of compactness, climbing to at least 80% AGN for sources with F277W – F444W > 1.6. The confirmed AGN have black hole masses of 107–109M⊙. While their UV luminosities (−16 >MUV> −20 AB mag) are low compared to UV-selected AGN at these epochs, consistent with percent-level scattered AGN light or low levels of unobscured star formation, the inferred bolometric luminosities are typical of 107–109M⊙black holes radiating at ∼10%–40% the Eddington limit. The number densities are surprisingly high at ∼10−5Mpc−3mag−1, 100 times more common than the faintest UV-selected quasars, while accounting for ∼1% of the UV-selected galaxies. While their UV faintness suggests they may not contribute strongly to reionization, their ubiquity poses challenges to models of black hole growth.more » « less
-
Abstract The James Webb Space Telescope is now detecting early black holes (BHs) as they transition from “seeds” to supermassive BHs. Recently, Bogdan et al. reported the detection of an X-ray luminous supermassive BH, UHZ-1, with a photometric redshift atz> 10. Such an extreme source at this very high redshift provides new insights on seeding and growth models for BHs given the short time available for formation and growth. Harnessing the exquisite sensitivity of JWST/NIRSpec, here we report the spectroscopic confirmation of UHZ-1 atz= 10.073 ± 0.002. We find that the NIRSpec/Prism spectrum is typical of recently discoveredz≈ 10 galaxies, characterized primarily by star formation features. We see no clear evidence of the powerful X-ray source in the rest-frame UV/optical spectrum, which may suggest heavy obscuration of the central BH, in line with the Compton-thick column density measured in the X-rays. We perform a stellar population fit simultaneously to the new NIRSpec spectroscopy and previously available photometry. The fit yields a stellar-mass estimate for the host galaxy that is significantly better constrained than prior photometric estimates ( M⊙). Given the predicted BH mass (MBH∼ 107–108M⊙), the resulting ratio ofMBH/M⋆remains 2 to 3 orders of magnitude higher than local values, thus lending support to the heavy seeding channel for the formation of supermassive BHs within the first billion years of cosmic evolution.more » « less
An official website of the United States government
